Правительство Российской Федерации Санкт-Петербургский государственный университет

Геологический факультет

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

ТЕРМОРЕНТГЕНОГРАФИЯ

специальная дисциплина образовательной программы подготовки аспиранта специальность 25.00.05 "Минералогия, кристаллография" (каф.кристаллографии)

Язык	(и) обучения		русский	
Tp	удоёмкость	2	_ зачётных единиц	
		Регистрационный номер рабочей программы:		
		/	/	

Санкт-Петербург 2013

Раздел 1. Характеристики, структура и содержание учебных занятий

1.1. Цели и задачи учебных занятий

Целью курса является ознакомление аспирантов со методом порошковой дифракции рентгеновских лучей в условиях переменных температур - терморентгенографии с акцентом на количественные методики определения тензора термического расширения, их сопоставление с данными дилатометрии и другими метода исследования вещества in situ, их практическое применение. Курс также дает представление о необходимости комплексного подхода к решению минералогических и материаловедческих задач.

1.2. Требования к подготовленности обучающегося к освоению содержания учебных занятий (пререквизиты):

Для успешного освоения дисциплины аспирант должен иметь предварительную подготовку по программам дисциплин «Рентгенофазовый анализ» и «Кристаллохимия» в объеме первого семестра и программам учебных геологических практик 1 и 2-го курсов.

1.3. Знания, умения, навыки, осваиваемые обучающимся

- знание терминологии, используемой в отечественных и международных публикациях по терморентгенографии и кристаллохимии высоких температур и давлений;
- знание теоретических основ и практических приемов, используемых в современной высокотемпературной кристаллохимии;
- знание основных методик, используемых при применении специализированного программного обеспечения;
- умение интрепретировать полученные результаты.

1.4. Перечень и объём активных и интерактивных форм учебных занятий

Программа курса предусматривает 15 часов аудиторных (консультаций, семинарских и практических) занятий и 60 часа самостоятельных занятий, на которых аспиранты выполняют самостоятельные задания с использованием специальных компьютерных программ (Определение тензора термического расширения кристаллических веществ методом терморентгенографии – ThetaToTensor (TTT)б Index, Atoms, PDXL и др.), в том числе в присутствии преподавателя.

1.5. Организация учебных занятий

Трудоёмкость, объёмы учебной работы и наполняемость групп обучающихся

Аудиторная учебная работа обучающихся	Самостоятельная работа	Трудоём- кость, зач ед.
		од.
15	60	2

Виды, формы и сроки

текущего контроля успеваемости и промежуточной аттестации

Текущая аттестация проводится в сроки, предусмотренные учебным планом. Форма аттестации - зачет.

1.6. Структура и содержание учебных занятий

1. Введение. 1. Аппаратура и методики терморентгенографии. Семинар 2 часа

Использование метода терморентгеногафии в геологии и минералогии для изучения высокотемпературных процессов и условий генезиса минералов.

Методики терморентгенографии: исследование твердофазных превращений; съемка в режиме плавающей температуры; исследование процессов плавления; получение наноматериалов в процессе дегидратации при комнатной температуре путем понижения давления; количественный фазовый анализ; и др.

- <u>2. Выполнение эксперимента.</u> Аудиторные 2 час., самостоятельные занятия 4 час. самостоятельные занятия 4 час.
- 1. Подготовка и выбор образца (рентгенофазовый анализ, съемка с эталоном). Знакомство с термоприставкой, установленной на дифрактометре. Выбор и задание условий съемки. Выполнение эксперимента.
- 2. Использование дополнительных in situ методов термического анализа (ДТА, ДСК и ТГ), дилатометрии, масс-спектрометрии.
- 3. Обработка терморентгеновских данных. Аудиторные 4 час., самостоятельные занятия 20 час.
- 1. Методика определения главных значений тензора термического расширения. Программный комплекс "Определение тензора термического расширения кристаллических веществ методом терморентгенографии ThetaToTensor (TTT)":
- Уточнение индицирования. Определение параметров элементарной ячейки фаз при различных температурах.
- Температурная зависимость параметров решетки аппроксимация полиномами 1–3 степени, экспонентой в разных температурных интервалах и т. п.
- Определение тензора термического расширения. Коэффициенты термического расширения.
 Характеристическая поверхность тензора термического расширения и ее сечения. Анализ изменения ориентировки и главных значений тензора с температурой.
- Разделение термических деформаций на компоненты (сдвиги, собственно тепловое расширение).
- <u>4. Анализ температурной зависимости параметров решетки</u>. Аудиторные 2 час., самостоятельные занятия 14 час.
- 1. Исследование фазовых превращений, обнаруживаемых по изменению зависимости (исследование температурной зависимости полуширины дифракционных пиков 2W(t) с целью обнаружения полиморфных переходов II рода).
- 2. Анализ сингулярных точек на кривых зависимости «температура параметры решетки» («включение» шарнирного механизма; корреляция «излом на температурной зависимости параметров температура стеклования» при исследовании стеклообразующих материалов; другие процессы, протекающие в веществе, например окисление восстановление).
- <u>5. Кристаллохимическая интерпретация характеристик термического расширения</u>. <u>Аудиторные</u> 2 час., самостоятельные занятия 12 час.
- 1. Зависимость величины термического расширения от прочности химических связей (зависимость от размера катиона; зависимость от заряда катиона и аниона; зависимость от размерности анионного комплекса).
- 2. Структурный механизм термического расширения (шарниры; сдвиги; развороты полиэдров, «танцующие полиэдры»).
- 3. Термические вибрации атомов и жестких анионных комплексов.

- 6. Изучение фазовых равновесий методом терморентгенографии. Лекции 3 час., самостоятельные занятия 12 час
- 1. Фазовые равновесия «твердое тело твердое тело». Образование и/или распад химических соединений. Растворимость в твердом состоянии (гомогенизация и распад твердых растворов). Бинодальная кривая распада твердых растворов, построенная по исследованию одного образца. Полиморфные переходы. Фазовые переходы 1- и 2-го рода. Изосимметрийные переходы. Переходы «порядок беспорядок».
- 2. Фазовые равновесия «твердое тело жидкая фаза». Двойные системы с эвтектикой, с перитектикой; системы с твердыми растворами.
- 3. Исследование тройных систем с твердыми растворами. Построение изотермических сечений с использованием параметров кристаллической решетки. Изменение параметров в одно-, двух- и трехфазных областях.
- 4. Исследование фазовых превращений с участием газовой фазы. Превращения со скачкообразным изменением хим. состава (дегидратация, разложение и т.п.). Превращения с непрерывным изменением хим. состава (потеря или приобретение массы).

Раздел 2. Обеспечение учебных занятий

2.1. Методическое обеспечение

2.1.1. Методическое обеспечение аудиторной работы

Подготовленные разработчиком презентации по всем темам курса

2.1.2. Методика обеспечения самостоятельной работы

- а) программа курса (в электронном виде);
- б) копии некоторых печатных работ, входящих в список рекомендуемой основной и дополнительной литературы;
- в) специальные компьютерные программы для выполнения самостоятельных заданий
- г) аналитические выборки для выдачи студентам для выполнения самостоятельных заданий

2.1.3. Методика проведения текущего контроля успеваемости и промежуточной аттестации и критерии оценивания

Усвоение изучаемого материала проверяется в результате текущего контроля, проводимого в форме опроса. Зачет проводится в письменной форме (50% оценки) с учетом выполнения практических работ (50% оценки). При отсутсвии сданных пратических заданий ответ не зачитывается.

<u>Критерием оценки результатов (зачет/незачет)</u> является качество выполненных практических заданий и письменного ответа, глубина раскрытия темы и умение ответить на вопросы преподавателя.

2.1.4. Методические материалы для проведения текущего контроля успеваемости и промежуточной аттестации (контрольно-измерительные материалы)

Методические материалы для промежуточной аттестации включают:

- а) перечень индивидуальных заданий для самостоятельного выполнения аспирантами;
- б) Материалы для выполнения самостоятельных заданий;

Критерии оценки знаний и формальные требования к выполнению самостоятельных работ доводятся преподавателем до сведения обучающихся на первом занятии.

2.2. Кадровое обеспечение

2.2.1. Требования к образованию и (или) квалификации штатных преподавателей и иных лиц, допущенных к преподаванию дисциплины

К проведению занятий должны привлекаться преподаватели с высшим специальным образованием (специальность Кристаллогафия и минералогия, магистр геологии; также возможны специальности Физика твердого тела и Химия твердого тела), обладающие достаточным уровнем знаний и практическим опытом работы в области кристаллохимии и кристаллографии, а также имеющие опыт планирования и организации учебного процесса. Предпочтение отдаётся лицам, имеющим учёную степень и/или учёное звание.

2.2.2. Требования к обеспеченности учебно-вспомогательным и (или) иным персоналом

Учебно-вспомогательный персонал должен иметь соответствующее образование и обладать навыками организации работы с пользовательскими программными продуктами.

2.2.3. Методические материалы для оценки обучающимися содержания и качества учебного процесса

Методические материалы материалы и порядок оценки устанавливаются и утверждаются Ученым советом Геологического факультета СПбГУ

2.3. Материально-техническое обеспечение

2.3.1. Требования к аудиториям (помещениям, местам) для проведения занятий

Лекции и практические занятия проводятся в аудиториях, приспособленных для демонстрации мультимедийных презентаций. Часть практических занятий проводится в компьютерном классе, где установлены специальные программы, необходимые для изучения курса.

2.3.2. Требования к аудиторному оборудованию, в том числе к неспециализированному компьютерному оборудованию и программному обеспечению общего пользования

Для мультимедийных презентаций необходим компьютер, оснащенный программой Microsoft Office PowerPoint и полнофункциональной антивирусной программой, мультимедийный проектор и экран. Аудитория должна быть оснащена доской и мелом.

2.3.3. Требования к специализированному оборудованию

Специализированное оборудование не требуется

2.3.4. Требования к специализированному программному обеспечению

Необходимо наличие специализированных программ для обработки терморентгеновского дифракционного эксперимента (программное обеспечение дифрактометров Stoe, Phaser, TTT, Index, Unit Cell), расчета главных значений тензора термического расширения, построения сечений и рисования поверхности тензора (DTP&DTC, TTT), также рисования кристаллическихструктур (Atoms, Diamond и др).

2.3.5. Требования к перечню и объёму расходных материалов

1 пачка писчей бумаги (100 листов) для проведения аттестации

2.4. Информационное обеспечение

2.4.1. Список обязательной литературы

- 1. Бубнова Р.С., Кржижановская М.Г., Филатов С.К. Практическое руководство по терморентгенографии поликристаллов. Часть І. Осуществление эксперимента и интерпретация полученных данных. Учебное пособие. СПб.: С.-Петерб. гос. ун-т, 2011. 70 с.
- 2. Бубнова Р.С., Филатов С.К. Высокотемпературная кристаллохимия боратов и боросиликатов. 2008. СПб: Наука. 760 с.
- 3. Филатов С.К. Высокотемпературная кристаллохимия. Л.: Недра, 1990.
- 4. Hazen R.M., Finger L.W. Comparative crystal chemistry. London e.a. 1982.

2.4.2. Список дополнительной литературы

- 1. Пунин Ю.О., Ковругин В.М. Самоорганизация кристаллобразующих процессов: синэнергетика кристаллогенезиса. Ч. 1. Введение в термодинамикунеобратимых процессов. Учебное пособие. СПб: Изд-во СПбГУ. 2012. 110 с.
- 2. Шепелев Ю.Ф. Инструментальные методы рентгеновской дифрактометрии поликристаллов. Учебное пособие. СПб: Изд-во СПбГУ. 2004. 56 с.
- 3. Powder Diffraction Theory and Practice. Eds R. E. Dinnebier, S. J. L. Billinge. The Royal Society of Chemistry. 2008.
- 4. Pecharsky V. K., Zavalij P. Y. FUNDAMENTALS OF POWDER DIFFRACTION AND STRUCTURAL CHARACTERIZATION OF MATERIALS. Springer. 2005.

2.4.3. Перечень иных информационных источников

Раздел 3. Процедура разработки и утверждения рабочей программы

Разработчик(и) рабочей программы

Фамилия, имя, отчество	Учёная степень	Учёное звание	Должность	Контактная информация (служебный адрес электронной почты, служебный телефон)
Бубнова Римма Сергеевна	доктор хим. наук		профессор	e-mail: rimma bubnova@mail.ru, тел 350-1778

В соответствии с порядком организации внутренней и внешней экспертизы образовательных программ проведена двухуровневая экспертиза:

ооразовательных программ проведена двухуровне	<u> </u>		
первый уро	вень (оценка качества		
содержания рабочей программы в	и применяемых педагогичес	ских технологий)	
Наименование кафедры	Дата заседания	№ протокола	
кристаллографии	05.04.2013	<i>№</i> 2	
минералогии	05.04.2013	№ 5	
BTO	орой уровень		
(соответствие целям подготовки и учебному плану образовательной программы)			
Экспертиза второго уровня выполнена в порядке, установленном приказом			
должностное лицо	дата приказа	№ приказа	
Уполномоченный орган (должностное лицо)	Дата принятия решения	№ документа	
Учебно-методическая			
комиссия Геологического			
факультета			

Иные документы об оценке качества рабочей программы

Документ об оценке качества	Дата документа	№ документа

Утверждение рабочей программы

Уполномоченный орган			
(должностное лицо)	Дата принятия решения	№ документа	

Внесение изменений в рабочую программу

Уполномоченный орган (должностное лицо)	Дата принятия решения	№ документа